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In biomarker evaluation/diagnostic studies, the hypervolume under the receiver
operating characteristic manifold (HUMK) and the generalized Youden index
(JK) are the most popular measures for assessing classification accuracy under
multiple classes. While HUMK is frequently used to evaluate the overall accu-
racy, JK provides direct measure of accuracy at the optimal cut-points. Simul-
taneous evaluation of HUMK and JK provides a comprehensive picture about
the classification accuracy of the biomarker/diagnostic test under considera-
tion. This article studies both parametric and non-parametric approaches for
estimating the confidence region of HUMK and JK for a single biomarker. The
performances of the proposed methods are investigated by an extensive sim-
ulation study and are applied to a real data set from the Alzheimer’s Disease
Neuroimaging Initiative.
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1 INTRODUCTION

The receiver operating characteristic (ROC) curve is widely used in biomarker evaluation studies as well as diag-
nostic studies under binary classification (eg, non-diseased vs diseased) and many ROC-related accuracy measures
have been extensively studied and reviewed in statistical literature.1-4 Among them, area under the ROC curve
(AUC) is a popular summary index of the discriminating ability of a biomarker/diagnostic test while the Youden
index (generally denoted as J) gains popularity because it serves as an accuracy measure as well as a cut-point
selection method.5,6

In practice, multi-class classification is quite common. Especially in medical diagnosis, we often encounter settings
involving multiple ordered stages. For example, in the diagnosis of Alzheimer’s disease, mild cognitive impairment
(MCI) is a transition stage between the expected cognitive decline of normal aging and the more serious decline of
dementia caused by Alzheimer’s disease (AD). Therefore, the diagnosis of Alzheimer’s disease generally follows ordinal
trichotomous classification: healthy, mild cognitive impairment, and fully diseased.7,8 As another example, for ovar-
ian cancer diagnosis, subjects might be categorized as “benign,” “borderline,” or “malignant.”9 For general K (K ≥ 3)
classes, there exist abundant statistical research on classification accuracy measures. For example, Scurfield10 and Moss-
man11 extended the two-class ROC to higher-dimensional ROC framework, and AUC to hypervolume under manifold
(HUMK); Nakas and Yiannoutsos12 proposed inference methods for HUMK with multiple classes; and Li and Fine13

presented a rigorous definition of HUMK in general. Specifically, the three-class setting has received enormous atten-
tion due to its popularity in practice and AUC has been extended to the volume under the ROC surface (VUS). Besides
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the overall accuracy measure HUMK ,11,12,14 two-class Youden index has been extended to the generalized Youden index
(JK) for disease classification of K(K ≥ 3) stages by Nakas et al15 and its properties had been thoroughly studied by
Luo and Xiong.16

Both the hypervolume under manifold (HUMK) and the generalized Youden index (JK) are critical accuracy mea-
sures for multi-class classification. The former summarizes the discriminating ability of a biomarker over all possible
cut-points, while the latter measures the classification accuracy at the optimal cut-points directly. While it is a com-
mon practice to rank/select biomarkers based on HUMK ,17,18 such practice can be misleading as it does not take into
consideration the discriminatory accuracy at the optimal cut-points. In this regard, Yin and Tian19 proposed joint con-
fidence region about AUC and J, which offers a more comprehensive view of the diagnostic accuracy of a biomarker
under two-class classification. It is worth noting that joint inference has also been examined in a number of research
papers.20-22 However, to our best knowledge, the joint inference of HUMK and JK under multi-class classification has not
been explored.

The rest of this article is organized as follows. In Section 2, preliminaries are given and the motivation to construct
joint inference for hypervolume under ROC manifold (HUMK) and generalized Youden index (JK) is further illustrated.
Parametric methods for confidence region estimation are proposed in Section 3 and non-parametric methods are pro-
posed in Section 4. Section 5 presents simulation results. The proposed methods are illustrated using a subset data
from Alzheimer’s Disease Neuroimaging Initiative (ADNI) study in Section 6. Finally, Section 7 contains summary
and discussion.

2 PRELIMINARIES: SETTINGS AND MOTIVATION

2.1 Settings

Consider a setting with K (K ≥ 3) independent ordered classes. Without loss of generality, we assume higher
marker values indicate greater chance of being diseased. Assume biomarkers are measured on a continuous
scale. For a single biomarker, let Yi, Fi(.), and fi(.) denote the random variable, the cumulative distribution
function (c.d.f.), and the probability density function (p.d.f.) for ith (i = 1, 2, … ,K) class, respectively. Let Pii
(i = 1, 2, … ,K) denote the correct classification rate for a randomly selected subject in ith class being correctly
identified into ith class. For the threshold-based decision rules, we need K − 1 cut-points to classify K ordered
classes. Given the vector of cut-points c = (c1, … , cK−1), where c1 < · · · < cK−1, the correct classification rates
are given by

P11 = F1(c1),
Pii = Fi(ci) − Fi(ci−1), for i = 2, … ,K − 1,
PKK = 1 − FK(cK−1).

For ease of notation, define ti = Pii (i = 1, 2, … ,K). The ROC manifold is constructed by plotting the points with
coordinates (t1, t2, … , tK) in K-dimensional space, while varying the K − 1 ordered thresholds under c1 < · · · < cK−1. The
hypervolume under the ROC manifold (HUMK) measures the overall classification accuracy for the biomarker with K
ordered stages. A rigorous mathematical definition of HUMK is given as23

HUMK =
∫

1

0 ∫

g1(t1)

0
…
∫

gK−2(t1,… ,tK−2)

0
gK−1(t1, … , tK−1)dtK−1 … dt2dt1, (1)

where gi−1 is a recursive equation defined as ti = gi−1(t1, … , ti−1), i = 2, … ,K. For example, g1(t1) = 1 − F2(F−1
1 (t1)), and

g2(t1, t2) = 1 − F3(F−1
2 (t2 + F2(F−1

1 (t1)))). Generally speaking, we can write

gi(t1, t2, … , ti) = gi (t1, t2, … , ti;F1,F2, … ,Fi,Fi+1) , (2)

where i = 1, … ,K − 1. The HUMK is equal to the probability that a set of K biomarker values, one from each class, will
be in the correct order, that is, HUMK = P(Y1 < Y2 < · · · < YK).12 The values of HUMK vary from 1∕K! to 1, where 1∕K!
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corresponds to a completely uninformative biomarker and 1 a perfect biomarker which separates K classes completely.
When K = 3, the volume under ROC surface (VUS stands for HUM3) can be expressed as14

VUS =
∫

∞

−∞
F1(s)(1 − F3(s))f2(s)ds.

As K = 4, the HUM4 can be simplified as24

HUM4 =
∫

1

0 ∫

F2(F−1
3 (u3))

0
F1(F−1

2 (u2))
[
1 − F4(F−1

3 (u3))
]

du2du3.

The generalized Youden index, on the other hand, evaluates the accuracy of a biomarker under K ordinal classes based
on the total correct classification rate at the optimal cut-points.15 We define the generalized Youden index by introducing
a weight of 1∕(K − 1) as follows:

JK =
1

K − 1
max

c1,… ,cK−1

[ K∑

i=1
Pii − 1

]

. (3)

The generalized Youden index defined in (3) falls into range 0 to 1, making it practically convenient. When K ordi-
nal classes overlap completely, JK becomes zero, indicating a completely useless marker. When a biomarker perfectly
separates K classes, JK equals to one, indicating a perfect biomarker. Note that JK can be further written as

JK =
1

K − 1

{K−1∑

i=1
max

ci
[Fi(ci) − Fi+1(ci)]

}

. (4)

2.2 Under normality and gamma distribution

For parametric assumptions, we consider normal and gamma as both distributions are widely used for modeling data
in applied fields. In the following, we present some formulas of HUMK and JK under both normality and gamma
distribution.

2.2.1 Under normality

Assume the biomarker measurements follow normal distributions, that is, Yi ∼ N(𝜇i, 𝜎
2
i ) for ith class (i = 1, 2 … K).

Given a vector of cut-points c = (c1, … , cK−1), where c1 < · · · < cK−1, the correct classification rates in (1) are
given by

P11 = Φ
(

c1 − 𝜇1

𝜎1

)
,

Pii = Φ
(

ci − 𝜇i

𝜎i

)
− Φ

(
ci−1 − 𝜇i

𝜎i

)
, for i = 2, … ,K − 1,

PKK = 1 − Φ
(

cK−1 − 𝜇K

𝜎K

)
,

where Φ(.) is the c.d.f. for standard normal distribution.
The HUMK in (1) can be obtained by expressing gi’s in (2) using normal c.d.f. and p.d.f. of K ordered classes. For

example, g1(t1) = 1 − Φ((Φ−1((t1 − 𝜇1)∕𝜎1) − 𝜇2)∕𝜎2). More specifically, we have

VUS =
∫

∞

−∞
Φ(as − b)Φ(−cs + d)𝜙(s)ds, (5)
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where a = 𝜎2∕𝜎1, b = (𝜇1 − 𝜇2)∕𝜎1, c = 𝜎2∕𝜎3, and d = (𝜇3 − 𝜇2)∕𝜎3,14 and

HUM4 =
∫

1

0 ∫

l

0
Φ
(
𝜎2Φ−1(u2) + 𝜇2 − 𝜇1

𝜎1

)[
1 − Φ

(
𝜎3Φ−1(u3) + 𝜇3 − 𝜇4

𝜎3

)]
du2du3, (6)

where l = Φ
(

𝜎3Φ−1(u3)+𝜇3−𝜇2

𝜎2

)
.

Under normality, the generalized Youden index defined in (3) can be written as

JK =
1

K − 1

K−1∑

i=1

{
Φ
(

ci − 𝜇i

𝜎i

)
− Φ

(
ci − 𝜇i+1

𝜎i+1

)}
, (7)

where ci is the optimal cut-point as

ci =

(
𝜇i+1𝜎

2
i − 𝜇i𝜎

2
i+1

)
− 𝜎i𝜎i+1

√
(𝜇i − 𝜇i+1)2 +

(
𝜎

2
i − 𝜎

2
i+1

)
ln

(
𝜎

2
i ∕𝜎

2
i+1

)

𝜎

2
i − 𝜎

2
i+1

, (8)

for i = 1, 2, … ,K − 1.25 If all the variances 𝜎2
i ’s are equal, ci = (𝜇i + 𝜇i+1)∕2.

2.2.2 Under gamma distribution

For ith class (i = 1, 2, … ,K), assume the biomarker measurement Yi ∼ G(𝛼i, 𝛽i), where 𝛼i > 0 (shape parameter), and
𝛽i > 0 (rate parameter). The HUMK and JK defined in (1) and (4) can be calculated using gamma p.d.f., fi(z|𝛼i, 𝛽i) =
𝛽

𝛼i
i

Γ(𝛼i)
z𝛼i−1e−𝛽iz, and gamma c.d.f., Fi(z|𝛼i, 𝛽i) =

𝛾(𝛼i,𝛽ix)
Γ(𝛼i)

, where Γ(𝛼i) stands for gamma function ∫ ∞0 t𝛼i−1e−tdt, and 𝛾(𝛼i, 𝛽ix)

stands for lower gamma function ∫ 𝛽ix
0 t𝛼i−1e−tdt. Specifically, as K = 3, we have

VUS =
𝛽

𝛼2
2

∏3
i=1Γ(𝛼i)∫

∞

−∞
𝛾(𝛼1, 𝛽1s)(Γ(𝛼3) − 𝛾(𝛼3, 𝛽3s))s𝛼2−1e−𝛽2sds, (9)

J3 =
[
𝛾(𝛼1, 𝛽1c1)
Γ(𝛼1)

− 𝛾(𝛼2, 𝛽2c1)
Γ(𝛼2)

+ 𝛾(𝛼2, 𝛽2c2)
Γ(𝛼2)

− 𝛾(𝛼3, 𝛽3c2)
Γ(𝛼3)

]/
2, (10)

where c1 and c2 are the pair of optimal cut-points with c1 < c2.

2.3 Motivation: A numerical study on correlation

In this section, we numerically investigate the correlation between HUMK and JK to provide justification for estimating
joint confidence region of HUMK and JK when K = 3. Assume Y1 ∼ N(0, 12), Y2 ∼ N(1, 12) and Y3 ∼ N(𝜇3, 𝜎

2
3) where 𝜇3

ranges from 1.2 to 7.0 with step size of 0.2 and 𝜎3 from 1.2 to 2.8 with step size of 0.2. The VUS and J3 are calculated
following (5) and (7) and the correlation is estimated using non-parametric bootstrap method (500 bootstrap samples) at
each setting. The results are presented in a heat map (Figure 1), which demonstrates the pattern of correlation between
VUS and J3 under different settings of 𝜇3 and 𝜎

2
3 .

From Figure 1, we observe that the correlation between VUS and J3 is relatively strong (ranges from 0.68 to 0.85)
under the settings investigated. However, the trend of the correlation follows a more complicated pattern than monotone.
Specifically, when 𝜎3 is fixed, the correlation tends (but not always) to increase as 𝜇3 increases; similarly, when 𝜇3 is fixed,
correlation tends to decrease (but not always) as 𝜎3 increases. We also investigate another setting where Y1 ∼ N(0, 12),
Y2 ∼ N(𝜇2, 𝜎

2
2 ), and Y3 ∼ N(5, 32). The correlation between VUS and J3 is estimated by varying 𝜇2 from 1.2 to 4.8 with

step size of 0.2 and 𝜎2 from 1 to 3 with step size of 0.2. We observe similar patterns regarding the correlation between
HUMK and JK .

Generally speaking, VUS and J3 are correlated and their correlation is not ignorable, hence it is necessary to consider
VUS (or HUMK) and J3 (or JK) simultaneously for the purpose of providing a comprehensive picture of a biomarker’s
discriminatory ability.
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F I G U R E 1 The estimated correlation between VUS and J3 under normality (K = 3). The rows correspond to different values of 𝜇3 from
1.2 (top) to 7.0 (bottom) and the column 𝜎3 from 1.0 (left) to 2.8 (right).

3 PARAMETRIC CONFIDENCE REGION ESTIMATION

In this section, we propose generalized inference approach for joint confidence region estimation of hypervolume under
ROC manifold (HUMK) and generalized Youden index (JK) under normality and gamma distribution. The generalized
variables and generalized pivots were introduced by Tsui and Weerahandi26 and Weerahandi.27 More details can be found
in the book by Weerahandi.28 When standard solutions do not exist for confidence intervals and hypothesis testing, the
generalized inference methods can be applied to different practical settings and have been shown to have satisfactory per-
formance, even at small sample sizes.19,29-31 Generalized confidence intervals have been shown to coincide with fiducial
confidence intervals by Hannig.32

Section 3.1 presents methods under normality, and Section 3.2 for handling non-normal data by Box-Cox transfor-
mation. Due to the popularity of gamma distribution in analyzing right-skewed data, fiducial methods under gamma
distribution are presented in Section 3.3.

3.1 Under normality: The generalized inference method

The generalized pivotal quantities for normal variance and means are well known as29

R
𝜎

2
i
=
(ni − 1)s2

i

Vi
, R

𝜇i = yi − Zi

√
R
𝜎

2
i
∕ni, (11)
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where Vi =
(ni−1)S2

i
𝜎

2
i

∼ 𝜒

2
ni−1 and Zi =

√
ni(Y i−𝜇i)

𝜎i
∼ N(0, 1) (i = 1, … ,K). By substituting 𝜇i and 𝜎

2
i with their corresponding

R
𝜇i and R

𝜎

2
i

in (6) and (7) for HUMK and JK , we can obtain their generalized pivotal quantities RHUMK and RJK .
It can be easily checked that R

𝜂

= (RHUMK ,RJK )
T is a bona fide generalized pivot for 𝜂 = (HUMK , JK)T satisfying the

following two conditions: (1) The distribution of R
𝜂

is independent of any unknown parameters, and (2) the observed
value of R

𝜂

equals to 𝜂 for given yi and s2
i (i = 1, 2, … ,K).

As K = 3, substituting 𝜇i and 𝜎

2
i in (5) and (7) using R

𝜇i and R
𝜎

2
i

respectively, the generalized pivotal quantity for VUS
can be obtained as

RVUS =
∫

∞

−∞
Φ(Ras − Rb)Φ(−Rcs + Rd)𝜙(s)ds, (12)

where Ra =
R
𝜎2

R
𝜎1
,Rb =

R
𝜇1−R

𝜇2
R
𝜎1

,Rc =
R
𝜎2

R
𝜎3
,Rd =

R
𝜇3−R

𝜇2

R
𝜎3

. The generalized pivot for the generalized Youden Index (J3) is

RJ3 =
Φ
(

Rc1−R
𝜇1

R
𝜎1

)
− Φ

(
Rc1−R

𝜇2
R
𝜎2

)
+ Φ

(
Rc2−R

𝜇2
R
𝜎2

)
− Φ

(
Rc2−R

𝜇3

R
𝜎3

)

2
, (13)

where Rc1 and Rc2 are the generalized pivots for optimal cut-points value c1 and c2 obtained by substituting R
𝜇i and R

𝜎

2
i

in

(8), that is, Rci =

[
(

R
𝜇i+1 R2

𝜎i
− R

𝜇i R
2
𝜎i+1

)
− R

𝜎i R𝜎i+1

√
(

R
𝜇i − R

𝜇i+1

)2 +
(

R2
𝜎i
− R2

𝜎i+1

)
ln

(
R2
𝜎i

R2
𝜎i+1

)]

∕
(

R2
𝜎i
− R2

𝜎i+1

)
, where i = 1, 2.

When all 3 groups have equal variances, Rci =
(

R
𝜇i + R

𝜇i+1

)
∕2, where i = 1, 2.

Given a data set with n1,n2, … ,nK subjects from 1, 2, … ,K classes, respectively, the confidence region for 𝜂 =
(HUMK , JK)T using generalized inference approach can be obtained via the following steps: (1) for i = 1, 2, … ,K, gen-
erate Vi ∼ 𝜒

2
ni−1,Zi ∼ N(0, 1), then calculate R

𝜎

2
i

and R
𝜇i following (11); (2) calculate R

𝜂

=
(

RHUMK ,RJK

)T , for example,
following (12) and (13) when K = 3; (3) repeat steps 1 and 2 for B = 2500 times to obtain a set of values Rb

𝜂

=
(

Rb
HUMK

,Rb
JK

)T
for b = 1, 2, … ,B; (4) calculate the sample mean vector �̂�GPQ =

1
B

∑B
b=1Rb

𝜂

and sample covariance matrix

̂ΣGPQ = 1
B−1

∑B
b=1

(
Rb
𝜂

− �̂�GPQ
) (

Rb
𝜂

− �̂�GPQ
)T ; (5) calculate ̃Rb

𝜂

= ̂Σ−1∕2
GPQ

(
Rb
𝜂

− �̂�GPQ
)
, the standardized version of Rb

𝜂

, and its
length || ̃Rb

𝜂

|| for b = 1, 2, … ,B.
Denote q{|| ̃R

𝜂

||;1−𝛼} as the 100(1 − 𝛼)th percentile of the set || ̃Rb
𝜂

|| (b = 1, … ,B). The 100(1 − 𝛼)% generalized confi-
dence region of 𝜂 = (HUMK , JK)T is

{
𝜂 ∶

(
𝜂 − �̂�GPQ

)T
̂Σ
−1
GPQ

(
𝜂 − �̂�GPQ

)
≤ q2

{|| ̃R
𝜂

||;1−𝛼}

}
.

The area of confidence region is estimated by AGPQ = 𝜋

(
q2
{|| ̃R

𝜂

||;1−𝛼}

)√
|̂ΣGPQ| where |̂ΣGPQ| is the determinant of ̂ΣGPQ

obtained in step 4. Such confidence region is denoted as GI (ie, the generalized inference approach).
To improve the performance of proposed confidence region, we can use some monotonic transformations such as

arcsine-square-root and the logit transformations. More details can be found in Appendix A. However, simulation results
indicate that these transformations are not beneficial for generalized inference methods under normality. Hence such
transformations are not pursued further under normality.

3.2 Without normality: Box-Cox transformation

Box-Cox transformation, widely used in ROC analysis,6,33,34 is a standard approach to transform original data to achieve
normality when normality assumption is not satisfied. Due to that fact that both HUMK and JK are invariant under
monotonic transformations, Box-Cox transformation can also be used here.

For the jth (j = 1, … ,ni) subject in the ith group (i = 1, 2, … ,K), let Yij denote the variable and Y (𝜆)
ij the transformed

variable. The Box-Cox transformation is constructed as:

Y (𝜆)
ij =

⎧
⎪
⎨
⎪
⎩

Y𝜆

ij−1

𝜆

, 𝜆 ≠ 0
log(Yij), 𝜆 = 0,
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WANG et al. 875

where it is assumed that Y (𝜆)
ij

iid∼ N
(
𝜇i, 𝜎

2
i

)
. The log-likelihood function can be written as:

K∑

i=1

ni∑

j=1

⎡
⎢
⎢
⎣
−1

2
log

(
2𝜋𝜎2

i
)
−

(
Y (𝜆)

ij − 𝜇i)2
)

2𝜎2
i

+ (𝜆 − 1) log(Yij)
⎤
⎥
⎥
⎦
.

The maximum likelihood estimate of 𝜆 can be obtained by maximizing the above log-likelihood function. After
transforming data using Box-Cox approach, the generalized inference method for normal data presented in Section 3.1
can be applied on the transformed data Y (𝜆)

ij for confidence region estimation of (HUMK , JK). Such obtained confidence
region is denoted as BCGI (ie, the generalized inference approach with Box-Cox transformation).

3.3 Under gamma distribution

In practice, biomarker measurements often can be continuous and positively skewed. It is well known that gamma
distribution is a popular option for modeling positively skewed data. Hence we present some direct generalized
inference methods for constructing joint inference of (HUMK , JK) under gamma distribution. While the generalized infer-
ence method based on Box-Cox transformed data presented in Section 3.2 is an option for handling gamma data, direct
methods that can handle gamma data is more desirable as it is more convenient. Since the exact fiducial quantity for
shape parameter (𝛼) and rate parameter (𝛽) in gamma distribution are not available, three approximate pivotal quantities
for 𝛼 and 𝛽 have been proposed in the literature.35-37 In the following, we will briefly review them.

Let Yi,1, … ,Yi,ni be an iid random sample from G(𝛼i, 𝛽i) for the ith class (i = 1, 2, … ,K). Let Y i and ̃Y i stand for the
arithmetic mean and geometric mean, and yi and ỹi be the observed values of Y i and ̃Y i, respectively.

Chen and Ye’s method35: It is known that 2n𝛼i log
(

Y i∕ ̃Y i
)
∼ 𝛼i𝜒

2
vi

approximately, where vi = 2E2(Wi)∕var(Wi)
and ci = E(Wi∕vi). The detailed formulas for E(Wi) and var(Wi) can be found in Chen and Ye.35 Using this result, an
approximate generalized pivotal quantity for 𝛼i can be written as

R
𝛼i =

Wi

2ni log(yi∕ỹi)
,

where Wi ∼ ci𝜒
2
(vi)

. Furthermore, utilizing a well-known result regarding gamma distribution, that is, 2ni𝛽iY i ∼ 𝜒

2
2ni𝛼i

, the
generalized pivot quantity for 𝛽i can be written as

R
𝛽i =

Ui

2niyi
, (14)

where Ui ∼ 𝜒

2
2niR𝛼i

.

Wang and Wu’s method36: Let Ti = log
(
̃Y i∕Y i

)
, i = 1, 2, … ,K. Note that Ui = Fi(.) ∼ U(0, 1), where Fi(.) is the c.d.f

of Ti. On the basis of Cornish-Fisher expansion, the Ui percentile of T can be approximated by 𝜅1(𝛼i) + [𝜅2(𝛼i)]1∕2Q(𝛼i,Ui),
where 𝜅j(𝛼i) is the kth cumulant of T and Q(𝛼i,Ui) is a function of 𝜅j(𝛼i). The detailed formulas can be found in Wang
and Wu.36 Let t denote the observed value of T. An approximate generalized pivotal quantity for 𝛼i, that is, R

𝛼i , can be
obtained by solving t = 𝜅1(𝛼i) + [𝜅2(𝛼i)]1∕2Q(𝛼i,u). Similar to Chen and Ye’s method, the approximate generalized pivotal
quantity for rate parameter, R

𝛽i , can be obtained by (14).
Krishnamoorthy and Wang’s method37,38: By applying the Wilson-Hilferty normal approximation, that is, Y 1∕3

i,j ∼
N(𝜇i, 𝜎i), j = 1, … ,ni, generalized pivotal quantities for normal mean and variance, R

𝜇i and R
𝜎i can be obtained for

transformed data. The GPQs for 𝛼i and 𝛽i can be further expressed as:

R
𝛼i =

1
9

⎧
⎪
⎨
⎪
⎩

(

1 + 0.5
R2
𝜇i

R2
𝜎i

)

+
⎡
⎢
⎢
⎣

(

1 + 0.5
R2
𝜇i

R2
𝜎i

)2

− 1
⎤
⎥
⎥
⎦

1∕2⎫
⎪
⎬
⎪
⎭

,

R
𝛽i =

1
27(R

𝛼i)1∕2(R
𝜎

2
i
)3∕2 .
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876 WANG et al.

Under gamma distribution, the generalized pivot for HUMK and JK in (1) and (4) can be obtained by substituting 𝛼i’s
and 𝛽i’s in the p.d.f. and c.d.f. of gamma distribution (see Section 2.2) with the corresponding R

𝛼i ’s and R
𝛽i ’s obtained

from three approximate generalized inference methods presented above. Take K = 3 as an example, replacing 𝛼i’s and 𝛽i’s
in (9) and (10) with R

𝛼i ’s and R
𝛽i ’s, we obtain approximate generalized pivots RVUS and RJ3 for VUS and J3, respectively.

Then following similar steps as presented in Section 3.1 for normal distribution, we can obtain the confidence region for
𝜂 = (HUMK , JK)T under gamma distribution. We refer these three generalized inference methods for gamma distribution
as: GammaGI1 (based on Chen and Ye’s method), GammaGI2 (based on Wang and Wu’s method) and GammaGI3
(based on Krishnamoorthy and Wang’s method).

4 NON-PARAMETRIC CONFIDENCE REGION ESTIMATION

In Section 3, we considered parametric inference methods for confidence region estimation under normal distribution and
gamma distribution. When no distributional assumptions can be made or data transformation is not able to achieve nor-
mality under both groups, HUMK and generalized Youden index (JK) can be estimated using non-parametric approaches.
In the following, we investigate some non-parametric bootstrapping approaches for estimating confidence region of
𝜂 = (HUMK , JK)T .

Given an observed data set, let yi,ji (i = 1, 2, … ,K, ji = 1, 2, … ,ni) stand for the measure for the jith subject in ith
group. The empirical estimate of HUMK can be given as

̂HUMK =

∑n1
j1=1

∑n2
j2=1 · · ·

∑nK
jK=1I(y1,j1 ≤ y2,j2 ≤ · · · ≤ yK,jK )

n1n2 · · ·nK
. (15)

And the empirical estimate of generalized Youden index can be given by

̂JK =
1

K − 1

K−1∑

i=1

[
1
ni

ni∑

ji=1
I(yi,ji ≤ ĉi) −

1
ni+1

ni+1∑

ji+1=1
I(yi+1,ji+1 ≤ ĉi)

]

, (16)

where ĉi (i = 1, 2, … ,K − 1) is the optimal empirical cut-point that gives the maximum of 1
ni

∑ni
ji=1I(yi,ji ≤ ĉi) −

1
ni+1

∑ni+1
ji+1=1I(yi+1,ji+1 ≤ ĉi).

Denote 𝜂0 = (̂HUMK ,̂JK)T for the observed data. Given a specific data set, the non-parametric bootstrap joint
confidence region for 𝜂 = (HUMK , JK)T can be obtained through following steps: (1) empirically search for the opti-
mal cut-points, ĉi, where i = 1, 2, … ,K − 1; (2) draw a bootstrap sample of size ni (i = 1, 2 … ,K) from ith sample,
and calculate ̂HUMK and ̂JK following (15) and (16); (3) repeat step 2 for B = 500 times to acquire a set of �̂�

b =
(
̂HUM

b
K ,̂Jb

K

)T(
b = 1, 2, … ,B), then calculate the bootstrap sample mean ̄

�̂�

B = 1
B

∑B
b=1�̂�

b and sample covariance matrix

̂Σ
B
= 1

B−1

(
�̂�

b − ̄

�̂�

b)(
�̂�

b − ̄

�̂�

b); 4
)

Calculate ̃

�̂�

b =
(
̂Σ

B)−1∕2(
�̂�

b − ̄

�̂�

B), and its length || ̃�̂�b|| for b = 1, 2, … ,B.

Denote q{|| ̃�̂�||;1−𝛼} as the 100(1 − 𝛼)th percentile of the set || ̃�̂�b|| (b = 1, 2, … ,B). The 100(1 − 𝛼)% generalized confi-
dence region of 𝜂 = (HUMK , JK)T is

{
𝜂 ∶

(
𝜂 − ̄

�̂�

B)T(
̂Σ

B)−1(
𝜂 − ̄

�̂�

B)
≤ q2

{|| ̃�̂�||;1−𝛼}

}
.

The area of confidence region is estimated by ABTI = 𝜋

(
q2
{|| ̃�̂�||;1−𝛼}

)√
|̂Σ

B
| where |̂Σ

B
| is the determinant of ̂Σ

B
in step 3.

This approach is referred as BTI.

Using �̂�0 =
(
̂HUMK ,̂JK

)T
to replace ̄

�̂�

B in BTI leads to another bootstrap method, that is, BTII. Simulation studies
indicate that the performance of BTI and BTII are very similar with BTI being slightly better. Hence we will only focus
on BTI hereafter.

Similar to parametric methods, we can use monotone transformation, arcsine-square-root and the logit transformation
to construct the confidence region for the transformed h(𝜂) = (h(HUMK), h(JK))T (the details can be found in Appendix A).
The bootstrap confidence region with the logit transformation is referred as BTLT, and the one with arcsine-square-root
transformation as BTAT.

 10970258, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.9998 by U
niversity O

f C
alifornia, W

iley O
nline L

ibrary on [26/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



WANG et al. 877

In summary, we propose three non-parametric confidence regions in this section: BTI (bootstrap confidence
region), BTLT (bootstrap confidence region with logit transformation), and BTAT (bootstrap confidence region with
arcsine-square-root transformation).

5 SIMULATION RESULTS

The proposed methods are evaluated by simulation studies under normality and gamma distribution with three classes
(K = 3 for HUMK and JK). Table 1 presents parameter settings for simulation study under normality and gamma distribu-
tion, and density plots can be found in “Supplemental materials.” The simulation settings include biomarkers with wide
range of values for VUS and J3. The settings under normality include different means and variances structures across
classes, while the settings under Gamma distribution also accommodates different skewness structures. For each param-
eter setting, 2000 samples are simulated. For generalized confidence regions, we set B = 2500. For bootstrap methods,
B = 500 bootstrap samples are used.

Table 2 presents estimated coverage probabilities at the nominal level of 95% and the estimated areas of the confi-
dence regions under normality from small to large sample sizes. The generalized inference method GI generally achieves
satisfactory coverage probabilities while it could be slightly conservative when sample sizes are smaller than (50, 50, 50)
for some settings, especially for large VUS and J3 (eg, VUS = 0.843, and J3 = 0.683). The confidence regions by BTI
are generally liberal, especially when sample sizes are smaller than (50, 50, 50). Both logit transformation (BTLT) and
arcsine-square-root transformation (BTAT) greatly improve coverage probabilities. For some scenarios, BTLT tends to
be slightly conservative when sample sizes are smaller than (30, 30, 30). In terms of area of confidence regions, the gener-
alized inference methods yield smaller areas than all the bootstrap methods. Among non-parametric bootstrap methods,

T A B L E 1 Simulation settings (K = 3).

Parameter settings

Scenario Class 1 Class 2 Class 3 VUS J3

Normal 1 N(0.0, 0.5) N(1.0, 0.5) N(2.0, 0.5) 0.843 0.683

Normal 2 N(0.0, 0.5) N(0.5, 0.5) N(1.0, 0.5) 0.684 0.533

Normal 3 N(0.0, 1.0) N(1.0, 1.0) N(2.0, 1.0) 0.536 0.383

Normal 4 N(0.0, 1.0) N(1.0, 1.2) N(2.0, 1.4) 0.471 0.327

Normal 5 N(0.0, 1.0) N(0.5, 1.0) N(1.5, 1.0) 0.430 0.290

Normal 6 N(0.0, 1.0) N(0.5, 1.2) N(1.5, 1.4) 0.378 0.241

Normal 7 N(0.0, 1.0) N(0.5, 1.0) N(1.0, 1.0) 0.337 0.197

Normal 8 N(0.0, 1.0) N(0.5, 1.2) N(1.0, 1.4) 0.306 0.167

Normal 9 N(0.0, 1.0) N(0.5, 1.0) N(0.8, 1.0) 0.298 0.158

Normal 10 N(0.0, 1.0) N(0.5, 1.2) N(0.8, 1.4) 0.277 0.137

Gamma 1 G(3.0, 2.0) G(3.0, 1.0) G(3.0, 0.2215) 0.747 0.614

Gamma 2 G(3.0, 2.0) G(3.0, 1.0) G(3.0, 0.401) 0.651 0.500

Gamma 3 G(2.0, 1.0) G(3.0, 1.0) G(5.0, 0.5) 0.640 0.520

Gamma 4 G(3.0, 2.0) G(3.0, 1.0) G(3.0, 0.627) 0.514 0.372

Gamma 5 G(1.0, 2.0) G(2.5, 1.8) G(3.0, 1.6) 0.505 0.365

Gamma 6 G(2.0, 2.0) G(2.0, 1.0) G(4.0, 1.0) 0.409 0.294

Gamma 7 G(1.0, 3.0) G(1.5, 2.0) G(2.0, 1.0) 0.379 0.236

Gamma 8 G(1.0, 3.0) G(1.0, 2.0) G(2.0, 2.0) 0.346 0.225

Gamma 9 G(1.5, 1.0) G(1.5, 0.8) G(2.0, 0.8) 0.273 0.136

Gamma 10 G(2.0, 4.0) G(2.0, 2.0) G(2.0, 1.0) 0.212 0.060
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878 WANG et al.

T A B L E 2 Coverage probabilities (and average area) of proposed 95% confidence regions for (VUS, J3) under normality (2000
simulations).

GI BTI BTLT BTAT

Sample size Coverage probability (area of confidence region)

Normal 1: (VUS, J3) = (0.843, 0.683)

(20,20,20) 0.965 (0.020) 0.905 (0.051) 0.969 (0.058) 0.932 (0.053)

(30,30,30) 0.971 (0.011) 0.922 (0.033) 0.968 (0.038) 0.940 (0.035)

(50,50,50) 0.973 (0.005) 0.929 (0.019) 0.954 (0.020) 0.939 (0.019)

(20,30,50) 0.977 (0.011) 0.921 (0.034) 0.959 (0.037) 0.940 (0.035)

(80,80,80) 0.982 (0.002) 0.934 (0.011) 0.954 (0.012) 0.943 (0.012)

(100,100,100) 0.977 (0.002) 0.926 (0.009) 0.945 (0.009) 0.932 (0.009)

(120,120,120) 0.984 (0.001) 0.943 (0.008) 0.953 (0.008) 0.948 (0.008)

(100,150,100) 0.977 (0.001) 0.940 ( 0.008) 0.940 ( 0.008) 0.940 ( 0.008)

Normal 2: (VUS, J3) = (0.684, 0.533)

(20,20,20) 0.967 (0.032) 0.921 (0.077) 0.964 (0.086) 0.942 (0.081)

(30,30,30) 0.960 (0.019) 0.928 (0.050) 0.953 (0.054) 0.941 (0.052)

(50,50,50) 0.965 (0.010) 0.933 (0.030) 0.957 (0.031) 0.946 (0.030)

(20,30,50) 0.967 (0.022) 0.928 (0.055) 0.954 (0.060) 0.939 (0.057)

(80,80,80) 0.963 (0.006) 0.945 (0.018) 0.954 (0.019) 0.949 (0.019)

(100,100,100) 0.947 (0.005) 0.948 (0.015) 0.957 (0.015) 0.951 (0.015)

(120,120,120) 0.957 (0.004) 0.944 (0.012) 0.947 (0.012) 0.945 (0.012)

(100,150,100) 0.956 (0.004) 0.940 (0.012) 0.946 (0.013) 0.944 (0.012)

Normal 3: (VUS, J3) = (0.536, 0.383)

(20,20,20) 0.951 (0.030) 0.934 (0.085) 0.960 (0.107) 0.951 (0.090)

(30,30,30) 0.953 (0.017) 0.930 (0.055) 0.949 (0.061) 0.945 (0.057)

(50,50,50) 0.954 (0.009) 0.940 (0.032) 0.951 (0.034) 0.945 (0.033)

(20,30,50) 0.955 (0.018) 0.933 (0.057) 0.954 (0.062) 0.947 (0.059)

(80,80,80) 0.961 (0.005) 0.936 (0.020) 0.947 (0.020) 0.941 (0.020)

(100,100,100) 0.959 (0.003) 0.940 (0.016) 0.942 (0.016) 0.939 (0.016)

(120,120,120) 0.967 (0.003) 0.955 (0.013) 0.960 (0.013) 0.958 (0.013)

(100,150,100) 0.969 (0.002) 0.944 (0.014) 0.950 (0.014) 0.947 (0.014)

Normal 4: (VUS, J3) = (0.471, 0.327)

(20,20,20) 0.962 (0.033) 0.926 (0.085) 0.955 (0.124) 0.944 (0.091)

(30,30,30) 0.960 (0.019) 0.942 (0.056) 0.955 (0.066) 0.953 (0.059)

(50,50,50) 0.959 (0.010) 0.946 (0.033) 0.960 (0.035) 0.953 (0.034)

(20,30,50) 0.953 (0.019) 0.928 (0.055) 0.947 (0.062) 0.941 (0.058)

(80,80,80) 0.957 (0.006) 0.949 (0.020) 0.960 (0.021) 0.952 (0.020)

(100,100,100) 0.956 (0.004) 0.946 (0.016) 0.957 (0.016) 0.954 (0.016)

(120,120,120) 0.958 (0.003) 0.953 (0.013) 0.962 (0.014) 0.960 (0.013)

(100,150,100) 0.955 (0.004) 0.944 (0.014) 0.952 (0.014) 0.946 (0.014)

(Continues)
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WANG et al. 879

T A B L E 2 (Continued)

GI BTI BTLT BTAT

Sample size Coverage probability (area of confidence region)

Normal 5: (VUS, J3) = (0.430, 0.419)

(20,20,20) 0.962 (0.035) 0.929 (0.084) 0.951 (0.134) 0.950 (0.092)

(30,30,30) 0.966 (0.020) 0.932 (0.055) 0.955 (0.070) 0.955 (0.058)

(50,50,50) 0.966 (0.010) 0.934 (0.033) 0.946 (0.036) 0.943 (0.034)

(20,30,50) 0.966 (0.023) 0.930 (0.059) 0.954 (0.069) 0.948 (0.063)

(80,80,80) 0.962 (0.006) 0.938 (0.020) 0.952 (0.021) 0.945 (0.020)

(100,100,100) 0.958 (0.005) 0.935 (0.016) 0.949 (0.016) 0.942 (0.016)

(120,120,120) 0.957 (0.004) 0.944 (0.013) 0.953 (0.014) 0.949 (0.013)

(100,150,100) 0.962 (0.004) 0.939 (0.014) 0.946 (0.014) 0.943 (0.014)

Normal 6: (VUS, J3) = (0.378, 0.241)

(20,20,20) 0.956 (0.034) 0.940 (0.080) 0.965 (0.167) 0.960 (0.087)

(30,30,30) 0.959 (0.019) 0.935 (0.054) 0.955 (0.079) 0.952 (0.057)

(50,50,50) 0.963 (0.010) 0.938 (0.032) 0.957 (0.038) 0.957 (0.033)

(20,30,50) 0.960 (0.020) 0.926 (0.054) 0.955 (0.066) 0.949 (0.058)

(80,80,80) 0.969 (0.006) 0.951 (0.020) 0.965 (0.021) 0.960 (0.020)

(100,100,100) 0.958 (0.005) 0.957 (0.016) 0.965 (0.016) 0.963 (0.016)

(120,120,120) 0.964 (0.004) 0.944 (0.013) 0.962 (0.013) 0.953 (0.013)

(100,150,100) 0.963 (0.004) 0.946 (0.013) 0.963 (0.014) 0.955 (0.014)

Normal 7: (VUS, J3) = (0.337, 0.197)

(20,20,20) 0.954 (0.036) 0.933 (0.073) 0.955 (0.170) 0.955 (0.084)

(30,30,30) 0.961 (0.020) 0.942 (0.049) 0.950 (0.087) 0.957 (0.055)

(50,50,50) 0.965 (0.009) 0.927 (0.031) 0.936 (0.042) 0.942 (0.031)

(20,30,50) 0.962 (0.021) 0.895 (0.044) 0.963 (0.056) 0.939 (0.048)

(80,80,80) 0.956 (0.004) 0.939 (0.018) 0.945 (0.021) 0.947 (0.019)

(100,100,100) 0.958 (0.003) 0.941 (0.014) 0.959 (0.015) 0.955 (0.014)

(120,120,120) 0.948 (0.003) 0.950 (0.012) 0.955 (0.013) 0.955 (0.012)

(100,150,100) 0.947 (0.003) 0.944 (0.013) 0.948 (0.014) 0.948 (0.013)

Normal 8: (VUS, J3) = (0.306, 0.167)

(20,20,20) 0.956 (0.037) 0.944 (0.070) 0.968 (0.177) 0.964 (0.082)

(30,30,30) 0.952 (0.021) 0.930 (0.047) 0.962 (0.092) 0.958 (0.053)

(50,50,50) 0.959 (0.011) 0.938 (0.032) 0.951 (0.034) 0.943 (0.033)

(20,30,50) 0.959 (0.021) 0.933 (0.046) 0.964 (0.064) 0.951 (0.051)

(80,80,80) 0.961 (0.006) 0.932 (0.018) 0.954 (0.022) 0.953 (0.019)

(100,100,100) 0.953 (0.005) 0.941 (0.014) 0.961 (0.017) 0.962 (0.015)

(120,120,120) 0.956 (0.004) 0.938 (0.012) 0.956 (0.013) 0.951 (0.012)

(100,150,100) 0.961 (0.004) 0.930 (0.013) 0.949 (0.014) 0.946 (0.013)

(Continues)
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880 WANG et al.

T A B L E 2 (Continued)

GI BTI BTLT BTAT

Sample size Coverage probability (area of confidence region)

Normal 9: (VUS, J3) = (0.298, 0.158)

(20,20,20) 0.936 (0.038) 0.936 (0.068) 0.953 (0.176) 0.949 (0.079)

(30,30,30) 0.950 (0.022) 0.931 (0.045) 0.955 (0.096) 0.952 (0.052)

(50,50,50) 0.951 (0.011) 0.943 (0.027) 0.949 (0.050) 0.955 (0.030)

(20,30,50) 0.957 (0.022) 0.936 (0.046) 0.955 (0.064) 0.950 (0.050)

(80,80,80) 0.957 (0.005) 0.944 (0.017) 0.944 (0.023) 0.953 (0.018)

(100,100,100) 0.958 (0.003) 0.943 (0.014) 0.955 (0.017) 0.952 (0.014)

(120,120,120) 0.939 (0.003) 0.941 (0.012) 0.939 (0.013) 0.941 (0.012)

(100,150,100) 0.951 (0.003) 0.943 (0.012) 0.947 (0.014) 0.951 (0.013)

Normal 10: (VUS, J3) = (0.277, 0.140)

(20,20,20) 0.945 (0.038) 0.960 (0.068) 0.960 (0.201) 0.962 (0.075)

(30,30,30) 0.949 (0.023) 0.961 (0.044) 0.961 (0.109) 0.963 (0.048)

(50,50,50) 0.959 (0.012) 0.956 (0.027) 0.959 (0.059) 0.964 (0.029)

(20,30,50) 0.951 (0.022) 0.952 (0.044) 0.954 (0.068) 0.952 (0.048)

(80,80,80) 0.964 (0.007) 0.954 (0.017) 0.959 (0.026) 0.965 (0.018)

(100,100,100) 0.956 (0.006) 0.948 (0.014) 0.956 (0.018) 0.962 (0.014)

(120,120,120) 0.956 (0.005) 0.937 (0.011) 0.960 (0.014) 0.961 (0.012)

(100,150,100) 0.956 (0.005) 0.952 (0.012) 0.967 (0.015) 0.966 (0.013)

BTI gives the the smallest area, and for most scenarios, it is followed by BTAT. BTAT yields similar estimated areas as
BTI when sample sizes are as large as (100,100, 100).

Table 3 presents coverage probabilities at 95% nominal level and estimated confidence regions under gamma
assumption. The three approximate generalized inference methods (GammaGI1, GammaGI2, and GammaGI3) main-
tain satisfactory coverage probabilities under most parameter settings while they can be liberal at small sizes under
certain settings. The generalized inference method with Box-Cox transformation (ie, BCGI) is liberal for most scenarios,
especially the ones with large VUS (eg, VUS = 0.747). The BTI method is generally liberal, especially when sample sizes
are from small to medium. Both logit transformation (BTLT) and arcsine-square-root transformation (BTAT) greatly
improve coverage probabilities, and they are generally satisfactory except that BTAT can be slightly liberal for some sce-
narios at small sample sizes. Overall, the three approximate generalized inference methods (GammaGI1, GammaGI2,
and GammaGI3) achieve the smallest average area of confidence region, followed by the generalized inference method
based on Box-Cox transformation (BCGI). Among non-parametric methods, BTLT yields largest areas in comparison to
BTI and BTAT.

In summary, generalized inference method (GI) has the most accurate coverage probabilities and the smallest average
area among all proposed methods under normal assumption. With gamma assumption, GammaGI2, and GammaGI3
are good options because they have satisfactory coverage probabilities and smallest average area among the proposed
methods. Without any distribution assumptions, both BTLT and BTAT are reasonable options and BTAT generally have
slightly smaller area than BTLT.

6 DATA EXAMPLE

ADNI is a global collaborative research project established to develop clinical, imaging, genetic, and
biochemical biomarkers for early detection and tracking of Alzheimer’s disease (AD). ADNI includes more than 800
participants aging from 55 to 90, recruited from over 50 sites across United States and Canada (publicly accessible
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WANG et al. 881

T A B L E 3 Coverage probabilities (and average area) of proposed 95% confidence regions for (VUS, J3) under gamma distributions
(2000 simulations).

GammaGI1 GammaGI2 GammaGI3 BCGI BTI BTLT BTAT

Sample size Coverage probability (area of confidence region)

Gamma 1: (VUS, J3) = (0.747, 0.614)

(20,20,20) 0.965 (0.027) 0.951 (0.025) 0.948 (0.026) 0.905 (0.031) 0.902 (0.072) 0.961 (0.080) 0.929 (0.075)

(30,30,30) 0.962 (0.017) 0.949 (0.017) 0.956 (0.020) 0.901 (0.017) 0.927 (0.047) 0.955 (0.051) 0.939 (0.049)

(50,50,50) 0.960 (0.009) 0.958 (0.009) 0.952 (0.009) 0.898 (0.009) 0.932 (0.028) 0.953 (0.029) 0.945 (0.029)

(20,30,50) 0.968 (0.018) 0.952 (0.016) 0.946 (0.017) 0.927 (0.020) 0.908 (0.055) 0.933 (0.060) 0.916 (0.056)

(80,80,80) 0.966 (0.005) 0.955 (0.005) 0.959 (0.006) 0.925 (0.004) 0.941 (0.017) 0.949 (0.018) 0.945 ( 0.018)

(100,100,100) 0.947 (0.004) 0.955 (0.004) 0.957 (0.004) 0.912 (0.004) 0.937 (0.014) 0.945 (0.014) 0.940 (0.014)

(120,120,120) 0.957 (0.004) 0.956 (0.003) 0.956 (0.004) 0.925 (0.003) 0.938 (0.012) 0.947 (0.012) 0.940 (0.012)

(100,150,100) 0.958 (0.004) 0.956 (0.003) 0.963 (0.004) 0.933 (0.003) 0.931 (0.012) 0.939 (0.012) 0.937 (0.012)

Gamma 2: (VUS, J3) = (0.651, 0.500)

(20,20,20) 0.963 (0.030) 0.958 (0.027) 0.946 (0.028) 0.922 (0.040) 0.931 (0.085) 0.966 (0.096) 0.948 (0.090)

(30,30,30) 0.963 (0.017) 0.949 (0.016) 0.942 (0.029) 0.906 (0.018) 0.938 (0.056) 0.963 (0.060) 0.951 (0.057)

(50,50,50) 0.961 (0.009) 0.957 (0.008) 0.960 (0.008) 0.930 (0.008) 0.945 (0.033) 0.964 (0.034) 0.952 (0.033)

(20,30,50) 0.968 (0.017) 0.941 (0.016) 0.951 (0.017) 0.929 (0.019) 0.931 (0.058) 0.961 (0.062) 0.946 (0.060)

(80,80,80) 0.969 (0.005) 0.951 (0.004) 0.954 (0.010) 0.930 (0.004) 0.945 (0.020) 0.957 (0.021) 0.951 (0.020)

(100,100,100) 0.956 (0.004) 0.943 (0.003) 0.945 (0.006) 0.950 (0.003) 0.949 (0.016) 0.958 (0.016) 0.954 (0.016)

(120,120,120) 0.961 (0.003) 0.967 (0.003) 0.947 (0.006) 0.925 (0.003) 0.953 (0.013) 0.958 (0.014) 0.954 (0.014)

(100,150,100) 0.966 (0.003) 0.958 (0.003) 0.959 (0.006) 0.940 (0.003) 0.945 (0.013) 0.951 (0.014) 0.949 (0.014)

Gamma 3: (VUS, J3) = (0.640, 0.520)

(20,20,20) 0.962 (0.040) 0.948 (0.038) 0.955 (0.039) 0.963 (0.077) 0.913 (0.083) 0.954 (0.092) 0.931 (0.086)

(30,30,30) 0.959 (0.025) 0.950 (0.027) 0.904 (0.019) 0.962 (0.039) 0.928 (0.055) 0.958 (0.058) 0.943 (0.056)

(50,50,50) 0.961 (0.015) 0.955 (0.014) 0.959 (0.014) 0.956 (0.017) 0.930 (0.033) 0.950 (0.034) 0.942 (0.033)

(20,30,50) 0.961 (0.029) 0.950 (0.024) 0.913 (0.019) 0.959 (0.055) 0.912 (0.063) 0.948 (0.067) 0.931 (0.066)

(80,80,80) 0.957 (0.009) 0.950 (0.009) 0.926 (0.007) 0.942 (0.009) 0.944 (0.020) 0.954 (0.021) 0.948 (0.02 0)

(100,100,100) 0.953 (0.007) 0.949 (0.007) 0.950 (0.007) 0.950 (0.007) 0.932 (0.016) 0.942 (0.016) 0.935 (0.016)

(120,120,120) 0.956 (0.006) 0.958 (0.006) 0.930 (0.005) 0.960 (0.006) 0.935 (0.013) 0.945 (0.014) 0.943 (0.014)

(100,150,100) 0.957 (0.006) 0.958 (0.006) 0.936 (0.005) 0.950 (0.006) 0.945 (0.014) 0.940 (0.014) 0.935 (0.014)

Gamma 4: (VUS, J3) = (0.514, 0.372)

(20,20,20) 0.949 (0.033) 0.931 (0.031) 0.927 (0.032) 0.938 (0.087) 0.934 (0.089) 0.968 (0.110) 0.955 (0.094)

(30,30,30) 0.952 (0.020) 0.938 (0.019) 0.943 (0.019) 0.941 (0.047) 0.948 (0.058) 0.963 (0.064) 0.958 (0.061)

(50,50,50) 0.959 (0.011) 0.943 (0.010) 0.959 (0.010) 0.936 (0.017) 0.941 (0.034) 0.952 (0.036) 0.945 (0.035)

(20,30,50) 0.956 (0.020) 0.935 (0.019) 0.943 (0.019) 0.950 (0.044) 0.947 (0.057) 0.963 (0.062) 0.957 (0.059)

(80,80,80) 0.958 (0.006) 0.942 (0.006) 0.952 (0.013) 0.931 (0.007) 0.943 (0.021) 0.953 (0.022) 0.948 (0.022)

(100,100,100) 0.949 (0.005) 0.947 (0.004) 0.955 (0.004) 0.928 (0.005) 0.944 (0.017) 0.952 (0.017) 0.947 (0.017)

(120,120,120) 0.959 (0.004) 0.961 (0.004) 0.946 (0.009) 0.925 (0.004) 0.949 (0.014) 0.958 (0.014) 0.955 (0.014)

(100,150,100) 0.962 (0.004) 0.957 (0.004) 0.958 (0.010) 0.926 (0.004) 0.936 (0.014) 0.944 (0.015) 0.941 (0.014)

(Continues)
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882 WANG et al.

T A B L E 3 (Continued)

GammaGI1 GammaGI2 GammaGI3 BCGI BTI BTLT BTAT

Sample size Coverage probability (area of confidence region)

Gamma 5: (VUS, J3) = (0.505, 0.365)

(20,20,20) 0.924 (0.035) 0.934 (0.033) 0.944 (0.035) 0.963 (0.103) 0.920 (0.086) 0.950 (0.110) 0.943 (0.093)

(30,30,30) 0.953 (0.022) 0.936 (0.021) 0.941 (0.022) 0.957 (0.065) 0.937 (0.057) 0.956 (0.065) 0.951 (0.059)

(50,50,50) 0.961 (0.012) 0.957 (0.011) 0.962 (0.012) 0.953 (0.031) 0.946 (0.034) 0.958 (0.036) 0.956 (0.035)

(20,30,50) 0.949 (0.021) 0.941 (0.020) 0.936 (0.021) 0.960 (0.058) 0.942 (0.055) 0.964 (0.061) 0.955 (0.058)

(80,80,80) 0.970 (0.007) 0.956 (0.007) 0.962 (0.007) 0.955 (0.013) 0.939 (0.021) 0.947 (0.021) 0.943 (0.021)

(100,100,100) 0.956 (0.005) 0.960 (0.006) 0.957 (0.005) 0.949 (0.008) 0.937 (0.017) 0.947 (0.017) 0.941 (0.017)

(120,120,120) 0.962 (0.004) 0.963 (0.004) 0.960 (0.004) 0.940 (0.006) 0.941 (0.014) 0.945 (0.014) 0.942 (0.014)

(100,150,100) 0.963 (0.004) 0.958 (0.004) 0.968 (0.004) 0.935 (0.006) 0.945 (0.014) 0.953 (0.015) 0.947 (0.014)

Gamma 6: (VUS, J3) = (0.409, 0.294)

(20,20,20) 0.954 (0.037) 0.943 (0.033) 0.950 (0.033) 0.943 (0.087) 0.932 (0.089) 0.969 (0.103) 0.958 (0.094)

(30,30,30) 0.962 (0.022) 0.950 (0.020) 0.961 (0.020) 0.949 (0.045) 0.942 (0.058) 0.963 (0.063) 0.954 (0.060)

(50,50,50) 0.966 (0.012) 0.967 (0.011) 0.970 (0.011) 0.953 (0.017) 0.938 (0.034) 0.956 (0.035) 0.948 (0.035)

(20,30,50) 0.958 (0.023) 0.957 (0.021) 0.956 (0.022) 0.942 (0.053) 0.916 (0.061) 0.960 (0.066) 0.937 (0.063)

(80,80,80) 0.968 (0.007) 0.956 (0.007) 0.968 (0.007) 0.938 (0.007) 0.936 (0.021) 0.951 (0.022) 0.943 (0.021)

(100,100,100) 0.965 (0.006) 0.952 (0.005) 0.953 (0.005) 0.940 (0.005) 0.938 (0.017) 0.946 (0.017) 0.942 (0.017)

(120,120,120) 0.956 (0.005) 0.959 (0.004) 0.952 (0.004) 0.936 (0.004) 0.943 (0.014) 0.951 (0.014) 0.947 (0.014)

(100,150,100) 0.965 (0.005) 0.943 (0.004) 0.958 (0.004) 0.940 (0.004) 0.941 (0.014) 0.946 (0.014) 0.943 (0.014)

Gamma 7: (VUS, J3) = (0.379, 0.236)

(20,20,20) 0.948 (0.034) 0.942 (0.030) 0.956 (0.031) 0.921 (0.031) 0.930 (0.083) 0.961 (0.101) 0.953 (0.089)

(30,30,30) 0.966 (0.020) 0.959 (0.017) 0.956 (0.018) 0.919 (0.017) 0.942 (0.054) 0.964 (0.059) 0.956 (0.056)

(50,50,50) 0.967 (0.010) 0.960 (0.008) 0.964 (0.009) 0.910 (0.009) 0.947 (0.032) 0.961 (0.033) 0.953 (0.032)

(20,30,50) 0.964 (0.021) 0.952 (0.018) 0.957 (0.019) 0.932 (0.019) 0.943 (0.056) 0.962 (0.061) 0.953 (0.058)

(80,80,80) 0.965 (0.005) 0.968 (0.004) 0.963 (0.004) 0.930 (0.004) 0.955 (0.020) 0.959 (0.020) 0.957 (0.020)

(100,100,100) 0.976 (0.004) 0.966 (0.003) 0.954 (0.003) 0.930 (0.003) 0.940 (0.016) 0.945 (0.016) 0.942 (0.016)

(120,120,120) 0.970 (0.003) 0.967 (0.003) 0.956 (0.003) 0.920 (0.003) 0.940 (0.013) 0.947 (0.013) 0.944 (0.013)

(100,150,100) 0.966 (0.003) 0.956 (0.003) 0.959 (0.003) 0.910 (0.003) 0.944 (0.013) 0.949 (0.014) 0.946 (0.013)

Gamma 8: (VUS, J3) = (0.346, 0.225)

(20,20,20) 0.954 (0.044) 0.926 (0.039) 0.942 (0.042) 0.964 (0.117) 0.933 (0.084) 0.963 (0.151) 0.955 (0.091)

(30,30,30) 0.956 (0.027) 0.937 (0.025) 0.954 (0.026) 0.960 (0.088) 0.923 (0.056) 0.959 (0.081) 0.947 (0.060)

(50,50,50) 0.959 (0.016) 0.956 (0.014) 0.957 (0.014) 0.961 (0.063) 0.937 (0.033) 0.958 (0.038) 0.952 (0.035)

(20,30,50) 0.963 (0.030) 0.944 (0.027) 0.952 (0.028) 0.953 (0.096) 0.924 (0.059) 0.965 (0.076) 0.951 (0.064)

(80,80,80) 0.962 (0.010) 0.942 (0.008) 0.962 (0.009) 0.970 (0.048) 0.934 (0.021) 0.960 (0.022) 0.950 (0.021)

(100,100,100) 0.960 (0.008) 0.948 (0.007) 0.959 (0.007) 0.958 (0.042) 0.934 (0.016) 0.954 (0.017) 0.944 (0.017)

(120,120,120) 0.963 (0.006) 0.946 (0.006) 0.950 (0.006) 0.965 (0.037) 0.934 (0.014) 0.952 (0.014) 0.943 (0.014)

(100,150,100) 0.961 (0.007) 0.943 (0.006) 0.958 (0.006) 0.968 (0.039) 0.942 (0.014) 0.951 (0.015) 0.946 (0.014)

(Continues)

 10970258, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.9998 by U
niversity O

f C
alifornia, W

iley O
nline L

ibrary on [26/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



WANG et al. 883

T A B L E 3 (Continued)

GammaGI1 GammaGI2 GammaGI3 BCGI BTI BTLT BTAT

Sample size Coverage probability (area of confidence region)

Gamma 9: (VUS, J3) = (0.273, 0.136)

(20,20,20) 0.920 (0.038) 0.925 (0.035) 0.931 (0.039) 0.904 (0.048) 0.958 (0.063) 0.963 (0.166) 0.957 (0.068)

(30,30,30) 0.949 (0.024) 0.943 (0.023) 0.945 (0.024) 0.921 (0.030) 0.943 (0.042) 0.957 (0.088) 0.949 (0.045)

(50,50,50) 0.966 (0.013) 0.947 (0.012) 0.956 (0.013) 0.932 (0.017) 0.942 (0.026) 0.953 (0.050) 0.953 (0.028)

(20,30,50) 0.953 (0.026) 0.932 (0.024) 0.942 (0.026) 0.925 (0.031) 0.939 (0.045) 0.957 (0.064) 0.945 (0.048)

(80,80,80) 0.958 (0.008) 0.951 (0.007) 0.960 (0.007) 0.944 (0.010) 0.932 (0.017) 0.948 (0.024) 0.947 (0.018)

(100,100,100) 0.957 (0.006) 0.960 (0.006) 0.970 (0.006) 0.952 (0.008) 0.947 (0.013) 0.957 (0.018) 0.960 (0.014)

(120,120,120) 0.968 (0.005) 0.964 (0.004) 0.963 (0.005 ) 0.965 (0.006) 0.934 (0.011) 0.952 (0.014) 0.951 (0.012)

(100,150,100) 0.965 (0.005) 0.957 (0.005) 0.957 (0.005) 0.956 (0.006) 0.931 (0.012) 0.950 (0.014) 0.948 (0.013)

Gamma 10: (VUS, J3) = (0.212, 0.060)

(20,20,20) 0.935 (0.034) 0.932 (0.031) 0.941 (0.032) 0.938 (0.087) 0.923 (0.089) 0.951 (0.113) 0.943 (0.095)

(30,30,30) 0.950 (0.020) 0.941 (0.018) 0.945 (0.019) 0.940 (0.045) 0.931 (0.059) 0.956 (0.065) 0.947 (0.061)

(50,50,50) 0.955 (0.011) 0.949 (0.010) 0.954 (0.010) 0.939 (0.015) 0.940 (0.035) 0.955 (0.036) 0.949 (0.035)

(20,30,50) 0.957 (0.021) 0.942 (0.019) 0.949 (0.019) 0.940 (0.046) 0.931 (0.059) 0.962 (0.064) 0.950 (0.061)

(80,80,80) 0.958 (0.006) 0.954 (0.006) 0.955 (0.006) 0.932 (0.006) 0.942 (0.021) 0.948 (0.022) 0.946 (0.022)

(100,100,100) 0.960 (0.005) 0.949 (0.004) 0.955 (0.004) 0.928 (0.004) 0.953 (0.017) 0.962 (0.017) 0.958 (0.017)

(120,120,120) 0.968 (0.004) 0.958 (0.003) 0.957 (0.003) 0.940 (0.004) 0.943 (0.014) 0.947 (0.014) 0.944 (0.014)

(100,150,100) 0.964 (0.004) 0.946 (0.004) 0.957 (0.004) 0.942 (0.004) 0.948 (0.014) 0.956 (0.015) 0.952 (0.015)

via http://adni.loni.usc.edu/data-samples/access-data). The ADNI study has four phases: ADNI 1, ADNI GO, ADNI
2, and ADNI 3. The baseline data of ADNI 1 include 379 subjects including 107 of healthy controls (HC), 182 of mild
cognitive impairment (MCI) subjects, and 90 of diseased (AD) subjects.

Early diagnosis of Alzheimer’s disease is critical for selecting optimal patient care and targeting important AD neu-
ropathological features in clinical trails. Three core cerebrospinal fluid (CSF) biomarkers have been incorporated into
research diagnostic criteria for AD, namely the “42 amino acid long amyloid-beta peptide” (A𝛽1−42), “total tau pro-
tein” (T-tau), and “tau phosphorylated at threonine 181” (P-tau181). Researchers have observed that A𝛽1-42 decreases
while T-tau and P-tau181 increase in the CSF of individuals with AD.39 Additionally, blood-based biomarkers, such
as “plasma amyloid 𝛽 peptides,” have been studied as a screening method to identify individuals at risk of demen-
tia, since they are less invasive and cost-effective.40 Studies have shown that a lower A𝛽42∕A𝛽40 ratio (A𝛽42∕40) in
plasma indicates higher risk of dementia.41 Furthermore, Plasma isoprostanes, such as “8-iso-PGF2𝛼 ,” has been shown
to have increased level in patients with AD, indicating the development and propagation of AD.42 We will study the
classification accuracy of A𝛽1−42, T-tau, P-tau181, A𝛽42∕40, and 8-iso-PGF2𝛼 by presenting their joint confidence regions
of VUS and J3.

Table 4 presents the descriptive statistics of A𝛽1−42, T-tau, P-tau181, A𝛽42∕40, and 8-iso-PGF2𝛼 . Note that some records
are not included due to missingness and all four biomarkers are measured on a continuous positive scale. Figure 2
presents density plots of HC, MCI, and AD for all five biomarkers. Note that for A𝛽1−42 and A𝛽42∕40, lower marker value
indicate worse disease status. By eyeballing Figure 2, we observe the substantial differences among these biomarkers.
To quantitatively evaluate their accuracy, we estimate their confidence region of (VUS, J3) using the proposed methods.
For A𝛽1−42, T-tau, P-tau181, and A𝛽42∕40, normality cannot be achieved for either original data or Box-Cox transformed
data based on Shapiro-Wilk test, while for 8-iso-PGF2𝛼 , normality can be achieved via Box-Cox transformation. Further-
more, gamma assumption is not satisfied for these five biomarkers based on gamma goodness-of-fit test.43 Therefore,
we use the non-parametric method BTAT to evaluate the joint confidence region of VUS and J3 of these biomarkers,
and we also use the parametric method BCGI, that is, the generalized inference method for Box-Cox transformed data,
for 8-iso-PGF2𝛼 .
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T A B L E 4 Descriptive statistics of Alzheimer’s markers (A𝛽1-42, T-tau, P-tau181, A𝛽42∕40, and 8-iso-PGF2𝛼).

HC MCI AD

Biomarker n Mean SD n Mean SD n Mean SD

A𝛽1-42 107 207.075 53.979 181 163.398 54.632 90 143.378 42.153

T-tau 107 69.112 28.306 178 100.382 51.729 88 121.943 57.737

P-tau181 107 24.748 13.756 182 35.555 16.823 90 41.600 19.864

A𝛽42/40 106 0.272 0.086 176 0.253 0.086 89 0.252 0.066

8-iso-PGF2𝛼 106 4.493 2.281 179 4.476 2.119 90 4.767 2.285

F I G U R E 2 Density plots of A𝛽1-42, T-tau, and P-tau181, A𝛽42∕40, and 8-iso-PGF2𝛼 .
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F I G U R E 3 Estimated 95.0% joint confidence regions by BTAT method and Bonferroni correction for A𝛽1−42, T-tau, P-tau181, and
A𝛽42/40 ratio, and estimated 95.0% joint confidence regions by BCGI method and Bonferroni correction for 8-iso-PGF2𝛼 . The BTAT
confidence region for A𝛽1−42 is given by the elliptical equation (x−0.351)2

0.107
+ (y−0.245)2

0.038
= 1 with major axis (1, 1.131)T and origin (0.351, 0.245).

Similarly, the elliptical equation for T-tau is (x−0.365)2

0.114
+ (y−0.267)2

0.038
= 1 with major axis (1, 1.115)T and origin (0.365, 0.267); (x−0.331)2

0.112
+ (y−0.226)2

0.039
= 1

for P-tau181 with major axis (1, 1.300)T and origin (0.331, 0.226); (x−0.176)2

0.095
+ (y−0.079)2

0.034
= 1 for A𝛽42/40 with major axis (1, 1.697)T and origin

(0.176, 0.079). The BCGI confidence region for 8-iso-PGF2𝛼 is given by elliptical equation (x−0.147)2

0.005
+ (y−0.032)2

0.003
= 1 with major axis (1, 1.106)T

and origin (0.147, 0.032). The rectangular regions are formed by corresponding Bonferroni-adjusted 97.5% confidence intervals in Table 5.

Figure 3 presents the elliptical confidence regions of VUS and J3 by the BTAT method for A𝛽1−42, T-tau, P-tau181,
and A𝛽42∕40, and by BCGI method for 8-iso-PGF2𝛼 , along with rectangular regions formed by Bonferroni-adjusted con-
fidence intervals. While widely used in multiple testing in practice, it is well-known that Bonferroni-adjusted method
leads to conservative results due to the fact that Bonferroni-adjusted method ignores the correlation between VUS and J3.
For example, for all three CSF biomarkers, the point with VUS as 0.39 and J3 as 0.23 is out of all three elliptical confi-
dence regions; however, this point is contained in all three rectangular regions by Bonferroni-adjusted method, indicating
that the proposed confidence regions could yield different results from the conservative Bonferroni-adjusted confidence
regions.

Table 5 presents the estimated areas of the joint confidence regions and Bonferroni-adjusted regions, the point esti-
mates and the confidence intervals with and without Bonferroni adjustment for both VUS and J3, respectively. It is easy
to see that the areas by proposed joint confidence region are substantially smaller than those by Bonferroni-adjusted
confidence regions, clearly indicating the benefit of making proper joint inference in biomarker evaluation.
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T A B L E 5 Summary of simultaneous confidence region and interval estimations of VUS and J3 for Alzheimer’s markers A𝛽1-42, T-tau,
P-tau181, A𝛽42∕40, and 8-iso-PGF2𝛼 .

A𝜷1-42 T-tau P-tau181 A𝜷42∕40 8-iso-PGF2𝜶 ∗

BTAT BTAT BTAT BTAT BTAT BCGI

Area Joint CR 0.012 0.013 0.013 0.010 0.008 0.004

Bonferroni 0.026 0.029 0.028 0.024 0.025 0.012

VUS Point est. 0.349 0.365 0.331 0.176 0.196 0.194

97.5% Bonfer. CI (0.283, 0.418) (0.292, 0.439) (0.262, 0.401) (0.130, 0.219) (0.152, 0.246) (0.143, 0.246)

95.0% ind. CI (0.292, 0.409) (0.301, 0.430) (0.271, 0.392) (0.130, 0.200) (0.159, 0.240) (0.149, 0.240)

J3 Point est. 0.245 0.264 0.227 0.076 0.042 0.026

97.5% Bonfer. CI (0.152, 0.334) (0.175, 0.358) (0.128, 0.321) (0.000, 0.186) (0.000, 0.170) (0.000, 0.108)

95.0% Ind. CI (0.163, 0.322) (0.187, 0.347) (0.140, 0.309) (0.000, 0.172) (0.000, 0.154) (0.005, 0.101)

Abbreviations: Area, area of confidence region of (VUS, J3); Bonfer. CI, Bonferroni-adjusted simultaneous confidence interval; Ind. CI, individual confidence
interval; ∗, normality is satisfied via Box-Cox transformation.

7 SUMMARY AND DISCUSSION

This article fills the gap of statistical methods for evaluating the accuracy of biomarkers (or tests) with multi-class
setting under ROC framework. In biomedical research, both hypervolume under ROC manifold (HUMK) and gener-
alized Youden index (JK) are popular measures for biomarker evaluation for multi-class classification. While HUMK
summarizes discriminating ability of a biomarker across all possible cut-points, it lacks the direct link to classification
accuracy and fails to provide the optimal cut-points. This can be compensated by JK as it not only provides the cut-points,
but also measures discriminatory accuracy with the maximum sum of correct classification rates a biomarker can possibly
achieve. Evaluating HUMK and JK simultaneously provides a comprehensive picture about the discriminating ability of
a biomarker for multi-class classification. This article explores parametric and non-parametric approaches on construct-
ing joint inference for (HUMK , JK) when there are three or more ordinal classes. Among all confidence region estimation
methods investigated in this research, the generalized inference method (GI) has the most accurate coverage probabili-
ties and the smallest average area under normal assumption. With gamma assumption, GammaGI2, and GammaGI3
are more accurate thus more preferred. The bootstrap method with arcsine-square-root BTAT is recommended when
estimating without any distribution assumption.

In addition to HUMK and JK , there are other measures to evaluate diagnostic accuracy for ordered multi-class setting.
For example, maximum absolute determinant (MADET)44 serves not only as a comprehensive measure which utilizes all
the information involved in a classification problem, but also as a cut-points selection method. The adjusted Youden index
(AYI) updates the generalized Youden index by introducing the weighted sum of misclassification rates as a penalty term
into generalized Youden index.45 Furthermore, weighted aggregated AUC and weighted aggregated YI using multi-step
procedure46 provide flexibility in examining performance of biomarkers under ordered classes. The proposed methods in
this article can be easily extended to any pair of accuracy measures under multi-class classification.

Certainly, other estimating methods such as the non-parametric estimation based on kernel smoothing33,47,48 and
parametric bootstrap methods under normal/gamma distribution assumptions can also be utilized for the proposed
problem.19,33 Furthermore, there exist some research on joint hypothesis testing under binary disease classification.22,49

We aim to explore joint testing of HUMK and JK under multi-class classification in future research.
Regarding computing, an R program is available upon request from ltian@buffalo.edu if needed. Furthermore, it is

noted that the use of many existing R packages (eg, trinROC, ThresholdROC) for accuracy measures in multiple class
classification should greatly facilitate the programming process.50,51
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APPENDIX A. MONOTONIC TRANSFORMATIONS

To improve the performance of proposed confidence region, we can use some monotonic transformations. Since the
arcsine-square-root transformation is variance stabilized for binomial probabilities, and the logit function is commonly
used for values between 0 to 1, these two transformations can be used to transform HUMK and JK . In the following, we
present the steps of constructing the generalized confidence region with such transformation.

Let h(.) stand for a transformation function. To obtain confidence region of transformed 𝜂 = (HUMK , JK)T ; that is,
𝜂

h = (h(HUMK), h(JK))T , we follow the same steps of computing the parametric confidence regions presented in
Section 3.1, whereas both ̂HUMK and̂JK are transformed using either the logit or arcsine-square-root transformation. The
100(1 − 𝛼)% confidence region of 𝜂h = (h(HUMK), h(JK))T is

{
𝜂

h ∶ (𝜂h − �̂�

h)T
(
̂Σ

h)−1(
𝜂

h − �̂�

h
)
≤ q2

1−𝛼

}
,
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where �̂�h and ̂Σ
h

stand for sample mean and the sample covariance matrix of the transformed simulated samples. For the

generalized inference method GI under normality, the transformed sample is
(

h
(

Rb
HUMK

)
, h

(
Rb

JK

))T
for b = 1, 2, … ,B

where Rb
HUMK

and Rb
JK

are the generalized pivotal quantities for HUMK and JK as presented in Section 3.1.
Furthermore, in order to obtain the confidence region of 𝜂 = (HUMK , JK)T , the confidence region (h(HUMK), h(JK))T

needs to be transformed back. That is, the 100(1 − 𝛼)% confidence region of 𝜂 =
[
h−1(h(HUMK)), h−1(h(JK))

]T =
(HUMK , JK)T is

{
𝜂 ∶

[
𝜂 − h−1(�̂�h)

]T(
̂Σ

inv)−1 [
𝜂 − h−1(�̂�h)

]
≤ q2

1−𝛼

}
,

where h−1(�̂�h) =
(

h−1
(
̂HUM

h
K

)
, h−1 (

̂Jh
K
))T

, the inverse transformed sample mean �̂�

h, and ̂Σ
inv
= JT

inv
̂Σ

h
Jinv is the inverse

transformed sample covariance matrix ̂Σh, where Jinv is the Jacobian matrix of 𝜂 with the respect to 𝜂

h, calculated by
taking the first derivative of the inverse function h−1(.) evaluated at �̂�h.

Similarly, these two transformations can be used in combination with non parametric methods BTI yielding BTAT
and BTLT.
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